

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	Onitu 0.1-prev documentation

Onitu 0.1 technical documentation

Onitu is a tool that can synchronize files between various places. This documentation contains everything you need to know in order to start hacking Onitu.

Note

This is a technical documentation. If you want to learn how to use Onitu, you should take a look at our User Documentation [http://github.com/onitu/onitu].

Content table

	Getting started
	Onitu at a glance

	Glossary

	Global architecture

	Dependencies

	Technical choices

	Configuration file
	Layout

	Folder options

	Example configuration

	Service options

	Creating a new driver
	Basics

	Handlers

	The Plug

	Metadata

	Exceptions

	Manifest

	Example

	Components documentation
	Launcher

	Referee

	Utils

	API 1.0
	Overview

	Routes

	Contributing to Onitu
	Reporting issues

	Running the tests

	Good practices with Git

	Coding style

	Changelog
	0.1

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Onitu 0.1-prev documentation

Getting started

Onitu at a glance

Onitu must deal with a lot of events coming from different places. Therefore, Onitu is build around an asynchronous model. Each part runs in a separate process, and communicate with the others via ZeroMQ messages and Redis.

In order to synchronize files between external services, Onitu uses a system of drivers. You can find more information about this system in Creating a new driver. Each driver sends events and receives orders from the Referee, which chooses where the files should be synchronised according to the configuration rules.

Glossary

	Driver

	A program making the junction between Onitu and a remote service (SSH, Dropbox, a hard drive…). cf Creating a new driver

	Entry

	A driver configured by the user. For example, it can be the Dropbox driver configured to run with a specific account. You can view an entry as an instance of a driver.

	Rule

	Maps a set of matching files to a set of entries. Used in the configuration to split up the files.

	Setup

	A JSON configuration file, which describes the entries and the rules.

	Referee

	Receive events from the drivers and allocate the files among the entries regarding the configuration rules. cf Referee

	Plug

	A helper class which implements all the boilerplate needed by a driver to communicate with Onitu. cf Plug

	Handler

	A function defined by a driver, which responds to a specific task. This function will be called by the Plug when needed. cf Handlers

Global architecture

You can here find an illustration of the global architecture of Onitu: Figure 1.1.

[image: Global architecture of Onitu]
A schematic illustrating the global architecture of Onitu with two drivers.

Dependencies

The core of Onitu uses several libraries (other dependencies exists but are specific to some drivers):

	Circus [http://circus.readthedocs.org]

	Used to start, manage and monitor the different processes

	PyZMQ [http://github.com/zeromq/pyzmq]

	A binding of the ZeroMQ library for the Python language

	redis-py [http://github.com/andymccurdy/redis-py]

	A library to communicate with Redis in Python

	Logbook [http://pythonhosted.org/Logbook/]

	A powerful logging library that allows Onitu to log on a ZeroMQ channel, aggregating all the logs in the same place

Technical choices

We made some difficult technical choices in order to build Onitu in the most maintainable and efficient way. Those choices can be questionable, but here are our motivations :

Python

Python is a general-purpose and flexible language. This was our first choice because all of us were already using and loving it. It allows us to distribute Onitu easily, without having to compile the sources or distribute binaries. Python is available on a lot of different systems, has a lot of built-in functionalities and is easy to understand and read.

You might have some concerns regarding the speed, but Onitu is an I/O bound application, so most of the time it is not executing Python code but downloading/uploading files or exchanging information over sockets. The same program with a low-level language like C would introduce a lot of complexity and probably only a very small performance amelioration.

ZeroMQ

As Onitu is an application with a lot of different processes and threads, we need a way to communicate between them. ZeroMQ is a layer on top of IP and Unix sockets, and provides messaging patterns. Onitu uses several of them, like ROUTER/DEALER, PUBLISH/SUBSCRIBE and REQUEST/REPLY.

ZeroMQ is really fast, available on a lot of platforms and has Python bindings. It is much more flexible and lightweight than other message brockers, such as RabbitMQ or ActiveMQ.

Redis

Onitu needs to store information in a persistent database. This database should be cross-platform, schema-less and easy to install and maintain. For that purpose, Redis has been chosen. But Redis is not available in the same version on all platforms, and is not really persistent. Also, the entire database is in-memory, limiting its size. Therefore, another solution will soon be chosen to replace it as it is not the perfect solution.

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Onitu 0.1-prev documentation

Configuration file

Warning

This documentation describes a proposal for the next format of Onitu’s configuration. Curently the setup is done is JSON and is nothing like what is described here.

Onitu’s configuration file is YAML.

Layout

A configuration file is mainly concerned with Folders and Services.

Folders are named directories that Onitu knows of and are considered roots of their respective hierarchies. Each folder will be kept syncronised across the different places it is mapped.

Services are configured drivers. A driver can be configured several times, thus producing more than one service. For exemple one could have two services, each controling a different remote server using the same driver.

The configuration file is meant to configure the services, map folders to services and control the way they are syncronised. All folders are first listed in the configuration and folder options can be used to specify how exactly they should be treated. Then all services are listed with their configuration. For each one of them the folders that should be mapped on this service are also listed. Additional options can be specified for each folder in a service. Those are the same than those used on folders or services but are used when when a more specific configuration is desiredon on per service-folder basis.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	# This partial configuration file shows the main layout.
Two folders are defined and two services are configured.
One cares about both folders, the other one only about the first.

name: "Configuration Layout"

folders:
 folder1:
 # Folder options
 folder2:
 # Folder options

services:

 serviceA:
 driver: "some_driver"
 # Service options

 folders:
 folder1:
 # Service/Folder options
 folder2:
 # Service/Folder options

 serviceB:
 driver: "some_other_driver"
 # Service options

 folders:
 folder1:
 # Service/Folder options

#EOF

Folder options

	mode

	

	values:	“r”, “w”, “rw”

	default:	“rw”

	what:	This value indicates if the folder should only be read-from, written-to or if it should be syncronised both ways. You probably want to specify this at the service level and not at the folder level.

	r (read):	If not specified new files or changes made in this folder will not be taken into account. You must specify this if you want Onitu to be able to read content from this folder.

	w (write):	If not specified new files or changes will not be written to this folder. You must specify this if you want Onitu to make changes to this folder when syncronising.

	type

	

	values:	To be defined. One or more media types as defined in rfc6838. Incomplete types such as “example” instead of “example/media_type” should be accepted.

	default:	If not specified all types will be accepted.

	what:	This value restricts which type(s) of file should be accepted in this folder. Files not conforming to this value will never be read from or written to this folder.

	min-size, max-size

	

	values:	A numeric value with an optional multiplying sufix. Metric prefixes (k, M, G, T, P) and IEC prefixes (Ki, Mi, Gi, Ti, Pi) are accepted.

	default:	If min-size is not specified there is no limit on how big a file in this folder must be. If max-siz is not specified there is no limit on how big a file in this folder can be.

	what:	This value restricts which files should be accepted in this folder based on their size. Files not within the range specified by min-size and max-size will never be read from or written to this folder.

	blacklist, whitelist

	

	values:	A list of paths, shell-like globbing is allowed.

	default:	By default the blacklist is empty and the whitelist isn’t used if not specified or empty. (To disable syncronisation completly you should use the folder’s mode.)

	what:	Only files matching a pattern in the whitelist will be accepted in this folder. Files matching a pattern in the blacklist will never be accepted.

Example configuration

This are sample configuration using some of the folder options above and some simple service options. More information about service options can be found in the section bellow. Those sample files are to give an idea of how folder options can be used to achieve different kinds of synchronisation, they are not about illustrating the different service options.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	# Sends completed torrents from server to a NAS.
Service options will be omitted if not relevant.

name: "Example Configuration"

folders:
 torrent:

services:

 localhost_fs:
 driver: "local_storage"
 # Service options.
 folders:
 torrent:
 mode: "r"
 # Service/Folder options.

 nas:
 driver: "ssh"
 # Service options.
 folders:
 torrent:
 mode: "w"
 # Service/Folder options.

#EOF

Service options

Service options are specific to each driver. This is because different drivers need to know different things to be able to handle their backends. This is a list of options for each driver.

TODO: Describe options for each driver.

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Onitu 0.1-prev documentation

Creating a new driver

A driver is a Python program which allows Onitu to synchronize files with a remote service, such as Dropbox, Google Drive, SSH, FTP or a local hard drive.

Basics

The drivers communicate with Onitu via the Plug class, which handles the operations common to all drivers. Each driver implements its specific tasks with the system of handlers. Those handlers will be called by the Plug at certain occasions.

In Onitu the file transfers can be made by chunks. When a new transfer begin, the Plug asks the others drivers for new chunks, and then call the upload_chunk handler. The transfers can also be made via the upload_file handler, which upload the full content of the file. Both protocols can be used together.

Each driver must expose a function called start and an instance of the Plug in their __init__.py file. This start function will be called by Onitu during the initialization of the driver, and should not return until the end of life of the driver (cf Plug.listen()).

When a driver detects an update in a file, it should update the Metadata of the file, specify a Metadata.revision, and call Plug.update_file().

Note

During their startup, the drivers should look for new files or updates on their remote file system. They should also listen to changes during their lifetime. The mechanism used to do that is specific to each driver, and can’t be abstracted by the Plug.

Each driver must have a manifest describing its purpose and its options.

Onitu provide a set of functional tests that you can use to see if your driver respond to every exigence.

Handlers

A handler is a function that will be called by the Plug on different occasions, such as getting a chunk from a file or starting a transfer. The drivers can define any handler they need. For example, some driver don’t need to do anything for initiating a transfer, so they might not want to implement the end_upload handler.
In order to register a handler, the Plug.handler() decorator is used.

Warning

All the handlers must be thread-safe. The plug uses several threads to handle concurrent requests, and each handler can be called from any of those threads. The Plug itself is fully thread-safe.

At this stage, the list of the handlers that can be defined is the following :

	
get_chunk(metadata, offset, size)

	Return a chunk of a given size, starting at the given offset, from a file.

	Parameters:	
	metadata (Metadata) – The metadata of the file

	offset (int) – The offset from which the content should be retrieved

	size (int) – The maximum size of the chunk that should be returned

	Return type:	string

	
get_file(metadata)

	Return the full content of a file.

	Parameters:	metadata (Metadata) – The metadata of the file

	Return type:	string

	
upload_chunk(metadata, offset, chunk)

	Write a chunk in a file at a given offset.

	Parameters:	
	metadata (Metadata) – The metadata of the file

	offset (int) – The offset from which the content should be written

	chunk (string) – The content that should be written

	
upload_file(metadata, content)

	Write the full content of a file.

	Parameters:	
	metadata (Metadata) – The metadata of the file

	content – The content of the file

	
set_chunk_size(chunk_size)

	Allows a driver to force a chunk size by overriding the default, or provided, value.
The handler takes the plug chunk size as argument, and if that size is invalid for the driver, it can return a new value.
Useful for services that require a minimum size for transfers.

	Parameters:	chunk_size (int) – the size the plug is currently using

	
start_upload(metadata)

	Initialize a new upload. This handler is called when a new transfer is started.

	Parameters:	metadata (Metadata) – The metadata of the file transferred

	
restart_upload(metadata, offset)

	Restart a failed upload. This handler will be called during the startup if a transfer has been stopped.

	Parameters:	
	metadata (Metadata) – The metadata of the file transferred

	offset (int) – The offset of the last chunk uploaded

	
end_upload(metadata)

	Called when a transfer is over.

	Parameters:	metadata (Metadata) – The metadata of the file transferred

	
abort_upload(metadata)

	Called when a transfer is aborted. For example, this could happen if a newer version of the file should be uploaded during the transfer.

	Parameters:	metadata (Metadata) – The metadata of the file transferred

	
close()

	Called when Onitu is closing. This gives a chance to the driver to clean its resources. Note that it is called from a sighandler, so
some external functionalities might not work as expected. This handler should not take too long to complete or it could cause
perturbations.

The Plug

Metadata

Exceptions

If an error happen in a driver, it should raise an appropriate exception. Two exceptions are handled by the Plug, and should be used accordingly to the situation : DriverError and ServiceError.

Manifest

A manifest is a JSON file describing a driver in order to help the users configuring it. It contains several informations, such as the name of the driver, its description, and its available options. Each option must have a name, a description and a type.

The type of the options will be used by Onitu to validate them, and by the interface in order to offer a proper input field. The available types are : Integers, Floats, Booleans, Strings and Enumerates. An enumerate type must add a values field with the list of all the possible values.

An option can have a default field which represents the default value (it can be null). If this field is present, the option is not mandatory. All the options without a default value are mandatory.

Here is an example of what your manifest should look like :

{
 "name": "Your driver's name",
 "description": "The description of your driver.",
 "options": {
 "my_option": {
 "name": "Option's name",
 "description": "The description of the option",
 "type": "string",
 },
 "another_option": {
 "name": "Another option",
 "description": "The description of the option",
 "type": "enumerate",
 "values": ["foo", "bar"],
 "default": "foo"
 },
 }
}

Example

Usually, the drivers are created as a set of functions in a single file, with the Plug in a global variable. However, you can use a different style if you want, such as a class.

Here is an example of a simple driver working with the local file system :

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

	import os

from onitu.api import Plug, ServiceError, DriverError

A dummy library supposed to watch the file system
from fsmonitor import FSWatcher

plug = Plug()

@plug.handler()
def get_chunk(metadata, offset, size):
 try:
 with open(metadata.filename, 'rb') as f:
 f.seek(offset)
 return f.read(size)
 except IOError as e:
 raise ServiceError(
 "Error reading '{}': {}".format(metadata.filename, e)
)

@plug.handler()
def upload_chunk(metadata, offset, chunk):
 try:
 with open(metadata.filename, 'r+b') as f:
 f.seek(offset)
 f.write(chunk)
 except IOError as e:
 raise ServiceError(
 "Error writting '{}': {}".format(metadata.filename, e)
)

@plug.handler()
def end_upload(metadata):
 metadata.revision = os.path.getmtime(metadata.filename)
 metadata.write_revision()

class Watcher(FSWatcher):
 def on_update(self, filename):
 """Called each time an update of a file is detected
 """
 metadata = plug.get_metadata(filename)
 metadata.revision = os.path.getmtime(metadata.filename)
 metadata.size = os.path.getsize(metadata.filename)
 plug.update_file(metadata)

 def check_changes(self):
 """Check the changes on the file system since the last launch
 """
 for filename in self.files:
 revision = os.path.getmtime(filename)
 metadata = plug.get_metadata(filename)

 # If the file is more recent
 if revision > metadata.revision:
 metadata.revision = os.path.getmtime(metadata.filename)
 metadata.size = os.path.getsize(metadata.filename)
 plug.update_file(metadata)

def start():
 try:
 root = plug.options['root']
 os.chdir(root)
 except OSError as e:
 raise DriverError("Can't access '{}': {}".format(root, e))

 watcher = Watcher(root)
 watcher.check_changes()
 watcher.start()

 plug.listen()

This is what a driver’s __init__.py file should look like:

	1
2
3

	from .driver import start, plug

__all__ = ["start", "plug"]

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Onitu 0.1-prev documentation

Components documentation

Here is the documentation of the parts not covered yet. You should not have to worry about those parts if you are writing a new driver, but they can be very useful if you want to hack the core of Onitu.

Launcher

Referee

The role of the Referee is to receive the events emitted by the drivers, and to send notifications to the other drivers accordingly to the configuration rules.

Utils

This module provides a set of classes and functions useful in several
parts of Onitu.

	
onitu.utils.at_exit(callback, *args, **kwargs)[source]

	Register a callback which will be called when a deadly signal comes

This funtion must be called from the main thread.

	
onitu.utils.get_available_drivers()[source]

	Return a dict mapping the name of each installed driver with its
entry point.

You can use it like that:
```
drivers = get_available_drivers()
if ‘local_storage’ in drivers:


local_storage = drivers[‘local_storage’].load()


```


	
onitu.utils.get_fid(filename)[source]

	Get the file-id (fid) of the given filename.

The file-id is a UUID version 5, with the namespace define in
NAMESPACE_ONITU.

The purpose of the file-id is to avoid using filenames as a direct
references to files inside Onitu.

	
onitu.utils.get_mimetype(filename)[source]

	Get the MIME type of the given filename.

This avoids interfaces and clients of the Onitu instances having to
determine the MIME type of the files they receive notifications from.

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Onitu 0.1-prev documentation

API 1.0

Overview

The port used by the API is 3862. All data is sent and received as JSON, and using the UTF-8 charset.

Routes

Note

All the following routes must be prefixed by : /api/v1.0.

Files

	
GET /files

	List the files.

Example request:

GET /api/v1.0/files HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "files": [
 {
 "fid": "10a0a66a-522b-57c6-aa96-bfba35afa12a",
 "filename": "toto",
 "size": 256,
 "owners": ["A", "B", "C"],
 "uptodate": ["A", "C"]
 },
 {
 "fid": "758644be-7d76-52f9-ad5e-add997549664",
 "filename": "photos/foo.jpg",
 "size": 12345,
 "owners": ["A", "B"],
 "uptodate": ["A", "B"]
 }
]
}

	Query Parameters:

		
	offset – Default to 0. The starting offset.

	limit – Default to 20. The maximum number of elements returned.

	
GET /files/(string: fid)/metadata

	Return the metadata of a file.

Example request:

GET /api/v1.0/files/758644be-7d76-52f9-ad5e-add997549664/metadata HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "fid": 758644be-7d76-52f9-ad5e-add997549664,
 "filename": "toto",
 "size": 256,
 "owners": ["A", "B", "C"],
 "uptodate": ["A", "C"]
}

Entries

	
GET /entries

	List all the entries.

Example request:

GET /api/v1.0/entries HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "entries": [
 {
 "name": "A",
 "driver": "local_storage",
 "options": {
 "root": "example/A"
 }
 },
 {
 "name": "B",
 "driver": "local_storage",
 "options": {
 "root": "example/B"
 }
 }
]
}

	
GET /entries/(name)

	Return the description of a given entry.

Example request:

GET /api/v1.0/entries/A HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "name": "A",
 "driver": "local_storage",
 "options": {
 "root": "example/A"
 }
}

	
GET /entries/(name)/stats

	Return the stats of a given entry (age, cpu, memory, status, name).

Example request:

GET /api/v1.0/entries/A/stats HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "info": {
 "age": 20.701695919036865,
 "cpu": 0.0,
 "create_time": 1406628957.07,
 "ctime": "0:00.19",
 "mem": 1.8,
 "mem_info1": "18M",
 "mem_info2": "707M",
 "started": 1406628957.370584
 },
 "name": "A",
 "status": "ok",
 "time": 1406628978.109587
}

Example error:

HTTP/1.1 404 Not Found
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A not found",
 "status": "error",
}

HTTP/1.1 409 Conflict
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A is not running",
 "status": "error",
}

	
GET /entries/(name)/status

	Return the status of a given entry.

Example request:

GET /api/v1.0/entries/A/status HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "name": "A",
 "status": "active",
 "time": 1406628978.109587
}

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "name": "A",
 "status": "stopped",
 "time": 1406628978.109587
}

Example error:

HTTP/1.1 404 Not Found
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A not found",
 "status": "error",
}

	
PUT /entries/(name)/stop

	Stop a given entry.

Example request:

PUT /api/v1.0/entries/A/stop HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "name": "A",
 "status": "ok",
 "time": 1406629516.531318
}

Example error:

HTTP/1.1 404 Not Found
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A not found",
 "status": "error",
}

HTTP/1.1 409 Conflict
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A is already stopped",
 "status": "error",
}

	
PUT /entries/(name)/start

	Start a given entry.

Example request:

PUT /api/v1.0/entries/A/start HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "name": "A",
 "status": "ok",
 "time": 1406629516.531318
}

Example error:

HTTP/1.1 404 Not Found
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A not found",
 "status": "error",
}

HTTP/1.1 409 Conflict
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A is already running",
 "status": "error",
}

	
PUT /entries/(name)/restart

	Stop and start a given entry.

Example request:

PUT /api/v1.0/entries/A/restart HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "name": "A",
 "status": "ok",
 "time": 1406629516.531318
}

Example error:

HTTP/1.1 404 Not Found
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A not found",
 "status": "error",
}

HTTP/1.1 409 Conflict
Vary: Accept
Content-Type: application/json

{
 "reason": "entry A is not running",
 "status": "error",
}

Rules

	
GET /rules

	Get the rules

Example request:

GET /api/v1.0/rules HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "rules": [
 {
 "match": {"path": "/"},
 "sync": ["A"]
 },
 {
 "match": {"path": "/backedup/", "mime": ["application/pdf"]},
 "sync": ["B"]
 }
]
}

	
PUT /rules

	Update the rules

Example request:

PUT /api/v1.0/rules HTTP/1.1
Host: 127.0.0.1
Accept: application/json

{
 "rules": [
 {
 "match": {"path": "/"},
 "sync": ["A"]
 },
 {
 "match": {"path": "/backedup/", "mime": ["application/pdf"]},
 "sync": ["B"]
 }
]
}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "status": "ok"
}

	
PUT /rules/reload

	Apply the rules (if they changed since the last time)

Example request:

PUT /api/v1.0/rules/reload HTTP/1.1
Host: 127.0.0.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
 "status": "ok"
}

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Onitu 0.1-prev documentation

Contributing to Onitu

Onitu is an opensource project, all of our codebase is available on Github and we would be very happy to include fixes or features from the comunity.

Here are some guidelines on what to look out for if you are hacking the code or having issues.

Reporting issues

When you encounter an issue with Onitu we’dd love to hear about it. Not that we particularly like having problems with the codebase, but its better to fix them than to leave them in there.
If you submit a bug report please include all the information available to you, here are some things you can do:

	If the problem is reproductible you can restart Onitu in debugging mode.

	Onitu generate logging output, this is very usefull to us.

	Try to simplify the things you are doing until getting a minimal set of actions reproducing the problem.

Running the tests

If you developed a new feature or simply want to try out an instalation of Onitu you can run the unit tests. For this you will need to install the requirements for the testing framework, this can easily be done using:

	pip install -r requirements_dev.txt

The unit tests can be launched by the command py.test tests/. You can also use tox in order to automatically generate a clean and functionnal environment for executing the tests.

Finnaly, some environment variables are useful to execute the tests, they are:

	ONITU_TEST_TIME_UNIT

	Many tests are based on timeout to consider a transfer as failed. This variable contains thus a number of seconds corresponding to a time unit, 1s by default.

	ONITU_TEST_DRIVER

	The tests set is only executed for one driver at a time. This variable is used to determine which driver will be tested, and can contains values such as local_storage or ssh.

Good practices with Git

In order to maintain the project while including contributions from the opensource comunity we need to have some rules in place. This is especialy true with regard to the use of Git.

When developing new features this should always be done on feature branches that are dedicated to that particular feature. Once the feature is ready, the feature branch should be rebased on the current develop branch before doing a pull request.

The maintainers of the develop branch will then review the pull request and merge it into develop when its ready. They might ask you to do some changes beforehand.

You should never merge master onto your feature branch, instead always use rebase on local code.

Coding style

The code you contribute to the project should respect the guidelines defined in PEP 008 [http://www.python.org/dev/peps/pep-0008], you can use a tool such as flake8 to check if this is the case. In case you’re wondering: we use four spaces indentation.

Please take those rules into account, we aim to have a clean codebase and codestyle is a big part of that. Your code will be checked when we consider your pull requests.

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	Onitu 0.1-prev documentation

Changelog

You can find a detailed summary of the changes between the releases on Github [https://github.com/onitu/onitu/releases]. Here is a brief summary :

0.1

First release.

The Referee can handle simple rules based on the path, the size and the file extension.

Four drivers are available :

	Local storage

	Dropbox

	Google Drive

	SSH

The test suite cover the Referee and the drivers. Some benchmarks are available.

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Onitu 0.1-prev documentation

 HTTP Routing Table

 /entries |
 /files |
 /rules

 			

 		
 /entries	

 	
 	
 GET /entries	

 	
 	
 GET /entries/(name)	

 	
 	
 GET /entries/(name)/stats	

 	
 	
 GET /entries/(name)/status	

 	
 	
 PUT /entries/(name)/restart	

 	
 	
 PUT /entries/(name)/start	

 	
 	
 PUT /entries/(name)/stop	

 			

 		
 /files	

 	
 	
 GET /files	

 	
 	
 GET /files/(string:fid)/metadata	

 			

 		
 /rules	

 	
 	
 GET /rules	

 	
 	
 PUT /rules	

 	
 	
 PUT /rules/reload	

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Onitu 0.1-prev documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 onitu	

 	
 	
 onitu.utils	

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Onitu 0.1-prev documentation

Index

 A
 | C
 | D
 | E
 | G
 | H
 | O
 | P
 | R
 | S
 | U

A

 	

 	abort_upload() (built-in function)

 	

 	at_exit() (in module onitu.utils)

C

 	

 	close() (built-in function)

D

 	

 	Driver

E

 	

 	end_upload() (built-in function)

 	

 	Entry

G

 	

 	get_available_drivers() (in module onitu.utils)

 	get_chunk() (built-in function)

 	get_fid() (in module onitu.utils)

 	

 	get_file() (built-in function)

 	get_mimetype() (in module onitu.utils)

H

 	

 	Handler

O

 	

 	onitu.utils (module)

P

 	

 	Plug

 	

 	
 Python Enhancement Proposals

 	

 	PEP 008

R

 	

 	Referee

 	restart_upload() (built-in function)

 	

 	Rule

S

 	

 	set_chunk_size() (built-in function)

 	Setup

 	

 	start_upload() (built-in function)

U

 	

 	upload_chunk() (built-in function)

 	

 	upload_file() (built-in function)

 Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Onitu 0.1-prev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Onitu 0.1-prev documentation »

 All modules for which code is available

		onitu.utils

 © Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

_modules/onitu/utils.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Onitu 0.1-prev documentation »

 		Module code »

 Source code for onitu.utils

"""
This module provides a set of classes and functions useful in several
parts of Onitu.
"""
import os
import sys
import uuid
import signal
import socket
import tempfile
import mimetypes
import pkg_resources

PY2 = sys.version_info[0] == 2
PY3 = sys.version_info[0] == 3

IS_WINDOWS = os.name == 'nt'

TMPDIR = tempfile.gettempdir()

NAMESPACE_ONITU = uuid.UUID('bcd336f2-d023-4856-bc92-e79dd24b64d7')

[docs]def at_exit(callback, *args, **kwargs):
 """
 Register a callback which will be called when a deadly signal comes

 This funtion must be called from the main thread.
 """
 if IS_WINDOWS:
 signals = (signal.SIGILL, signal.SIGABRT, signal.SIGINT,
 signal.SIGTERM)
 else:
 signals = (signal.SIGINT, signal.SIGTERM, signal.SIGQUIT)

 for s in signals:
 signal.signal(s, lambda *_, **__: callback(*args, **kwargs))

[docs]def get_fid(filename):
 """
 Get the file-id (fid) of the given filename.

 The file-id is a UUID version 5, with the namespace define in
 :attr:`NAMESPACE_ONITU`.

 The purpose of the file-id is to avoid using filenames as a direct
 references to files inside Onitu.
 """
 if PY2:
 filename = filename.encode('utf-8')

 return str(uuid.uuid5(NAMESPACE_ONITU, filename))

[docs]def get_mimetype(filename):
 """
 Get the MIME type of the given filename.

 This avoids interfaces and clients of the Onitu instances having to
 determine the MIME type of the files they receive notifications from.
 """

 mimetype = mimetypes.guess_type(filename)[0]

 # RFC 2046 states in section 4.5.1:
 # The "octet-stream" subtype is used to indicate that a body contains
 # arbitrary binary data.
 if not mimetype:
 mimetype = 'application/octet-stream'

 return mimetype

if IS_WINDOWS:
 # We can't use IPC sockets on Windows as they are not supported
 # by ZeroMQ at the moment, so we implement a fallback by creating
 # a temporary file containing an URI corresponding to an open port.
 def _get_uri(session, name):
 sock_file = os.path.join(
 TMPDIR, 'onitu-{}-{}.txt'
).format(session, name)

 if os.path.exists(sock_file):
 with open(sock_file) as f:
 return f.read()

 tmpsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 tmpsock.bind(('127.0.0.1', 0))
 uri = 'tcp://{}:{}'.format(*tmpsock.getsockname())
 tmpsock.close()

 with open(sock_file, 'w+') as f:
 f.write(uri)

 return uri

 def delete_sock_files():
 import glob

 for sock_file in glob.glob(os.path.join(TMPDIR, 'onitu-*.txt')):
 os.unlink(sock_file)
else:
 # On Unix-like systems we use an IPC socket (AF_UNIX)
 def _get_uri(session, name):
 return 'ipc://{}/onitu-{}-{}.sock'.format(TMPDIR, session, name)

def get_escalator_uri(session):
 return _get_uri(session, 'escalator')

def get_events_uri(session, name, suffix=None):
 if suffix:
 name = "{}:{}".format(name, suffix)

 return _get_uri(session, name)

def get_logs_uri(session):
 return _get_uri(session, 'logs')

def get_circusctl_endpoint(session):
 return _get_uri(session, 'circusctl')

def get_pubsub_endpoint(session):
 return _get_uri(session, 'pubsub')

def get_stats_endpoint(session):
 return _get_uri(session, 'stats')

[docs]def get_available_drivers():
 """
 Return a dict mapping the name of each installed driver with its
 entry point.

 You can use it like that:
    ```
    drivers = get_available_drivers()
    if 'local_storage' in drivers:
        local_storage = drivers['local_storage'].load()
    ```
 """
 entry_points = pkg_resources.iter_entry_points('onitu.drivers')
 return {e.name: e for e in entry_points}

 © Copyright 2013, Yannick Péroux, Alexandre Baron, Antoine Rozo, Wannes Rombouts, Louis Roché, Maxime Constantinian, Morgan Faget, Mathis Dupuy, Frank Lenormand, Timothee Maurin.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_images/global_archi.png
Process

Launcher

Process

—_ Referee ——
Py >~ _
Publish / Subscribe Publish / Su\bscrlbe
Vd

AN

Process Process

Dropbox
driver

LocalStorage
driver

Local hard

Dropbox drive

